Pagine

domenica, novembre 26, 2017

Piccoli episodi di vita teutonica

In vista dell'arrivo della squadra del nipotame Zucchero si sta organizzando, dopo sondaggio nepotale tra cannelloni e cornetti, per preparare questi ultimi con la ricetta già sperimentata ma non più usata da anni. Io per ora ho contribuito acquistando ieri l'ingrediente principale: mezzo chilo di burro.
Oggi però Zucchero si è accorta che mancava un altro ingrediente fondamentale: il lievito. Ma qui la domenica è tutto chiuso. Abbiamo pensato che l'unica speranza fosse la nostra vecchia panetteria di fiducia, che, oltre a pane e affini, vende anche cibarie, latticini e affini. Ci siamo quindi incamminati, ma, giunti lì, non abbiamo trovato il lievito tra gli scaffali.

– Ci servirebbe del lievito – chiedo alla commessa.
– Non ne vendiamo – mi risponde.

A quel punto Zucchero propone il supermercato della stazione. L'unico aperto di domenica.

– Ma se non vendono neppure il latte fresco. Figurati se hanno il lievito di birra.

Ma col cuore pieno di speranza-è-l'ultima-a-morire ci incamminiamo verso la stazione. Senonché, giunti in prossimità di Carosello, il nostro ristorante italiano preferito della città ...

– E se chiedessimo a loro? – dice Zucchero.
– Sai che non è per niente una cattiva idea? Fanno pane e pizza, quindi devono averlo.
– Ma sarà brutto, dai.
– Ma no! Proviamo. Secondo me ce lo danno.

– Ci servirebbe un favore – dico al nostro cameriere di riferimento. – Ieri ci siamo scordati il lievito e oggi lo stiamo cercando ma non siamo riusciti a trovarlo.
– Te serve o levetu? – mi chiede andando subito al dunque e allontanandosi verso la dispensa.

– Grazie, quanto ti dobbiamo?
– Niente, figurati. Dobbiamo volerci bene tra italiani.
– Eh, sì. Sono d'accordo.


Nel frattempo nel nuovo quartiere abbiamo trovato  un pescivendolo che, oltre a vendere del pesce nettamente sopra alla media di qui, sa anche applicare le consuetudini del buon commerciante. È molto gentile, sa riconoscere (e ricompensare da) gli errori e ogni tanto dispensa regalie ai clienti.
È interessante che dopo qualche settimana che lo frequentavo eravamo già passati al tu e alle pacche sulle spalle. Ah, anche lui è un'immigrato di area mediterranea. Per esperienza so che un certo tipo di comunicazione funziona meglio tra mediterranei piuttosto che con nordeuropei. Il pescivendolo del vecchio quartiere, dopo più di dieci anni di frequentazione a male pena mi salutava.
Ma in compenso nel nuovo quartiere abbiamo anche instaurato degli ottimi rapporti con il vicinato autoctono. In particolare con i vicini di cui cinque anni fa avevo scritto che promettevano bene. E bisogna dire che le promesse sono state mantenute. Senza di loro la nostra vita sarebbe un po' più complicata. Il deterioramento dei rapporti con l'altro vicinato sono ormai un lontano ricordo.

Rasature autarchiche

Come avevo accennato in una serrata discussione su Facebook, grazie a un amico ho scoperto una schiuma da barba eccezionale. Ed è pure un prodotto italiano!
Da quel giorno ho deciso che avrei usato solo quella.
Basta con lo strapotere delle multinazionali francesi dei cosmetici!!

Ma ora la grande novità è ...


Guardate che mi ha fatto scoprire mia moglie qui in terra teutonica!!

giovedì, novembre 23, 2017

Ansermet, il musicista matematico contrapposto ad Adorno e alla dodecafonia: Stravinsky o Schönberg?

Qualche giorno fa ho ascoltato la puntata di WikiMusic del 12/11/2017 che era dedicata al musicista matematico Ernest Ansermet. Di seguito riporto alcuni brani che mi sono sembrati particolarmente interessanti.

...Ansermet è anche autore di un significativo libro sulla musica del secolo scorso, I fondamenti della musica nella coscienza dell'uomo del 1961. Un grosso e complesso volume che mantiene un rigore filosofico molto raro da riscontrare nei libri di filosofia della musica. Non ci sono virtuosismi intellettuali e lessicali e neanche l’ideologia politica di Adorno. Sebbene è proprio con questo autore che il libro di Ansermet può essere messo in rapporto dialettico. Proprio perché in entrambi i casi sono due i compositori che vengono presi a modello per illustrare le due diverse filosofie della musica: Stravinsky e Schönberg. Stravinsky la restaurazione, Schönberg il progresso per Adorno. Per Ansermet si tratta di smontare la dodecafonia come metodo di composizione assolutamente falso.
La frase cardine del libro di Ansermet è la seguente: non si può sfuggire alla legge tonale poiché essa è la legge dell’orecchio. Secondo Ansermet c’è un substrato culturale che accomuna tutti gli uomini e che ci permette di percepire la musica tutti alla stessa maniera. Ansermet non parla né di gusto né di piacere ma puramente di percezione. E arriva a questa concezione tramite la matematica. Ansermet dice che il nostro apparato uditivo percepisce secondo leggi logaritmiche. Cioè il prodotto di due intervalli coincide nel nostro orecchio alla somma degli stessi e questa è proprio una proprietà dei logaritmi. Questo modo di pensare non può concepire una tecnica come quella dodecafonica in cui i riferimenti vengono a mancare perché i suoni sono svincolati tra loro. In sostanza nella dodecafonica si creerebbe un cortocircuito. Cioè l’oggetto percepito non incontra l’atto percettivo del senso che la coscienza riesce a dare a ciò che percepisce. Questo fa sì che la nostra coscienza non comprenda la musica dodecafonica. Quei suoni potrebbero essere anche stati messi lì casualmente e la nostra coscienza non li comprenderà. Non comprenderà che essi costituiscono una serie dodecafonica.

Secondo Ansermet, per rinnovare il linguaggio tonale non è necessario sopprimerlo ma basterebbe rielaborarlo in maniera originale. Così fa il genio. La nuova musica non ha bisogno di distruggere quanto fino allora si era fatto o si era detto. Il vero genio riesce a creare musica nuova a partire dai presupposti classici. La vera differenza la fa lo stile non tanto le forme.

Le posizioni di Ansermet sono state viste come reazionarie. Però, a pensarci bene, alla fine le cose sono andate come lui aveva previsto. In effetti oggi la dodecafonia rimane poco più che un esercizio.

Per altre considerazioni sulla dodecafonia...

lunedì, novembre 20, 2017

Un cammino transappenninico: fotoracconto del terzo giorno

3° giorno del cammino transappenninico 4 giugno - Subiaco - Altipiani di Arcinazzo, 20 km (79 km finora)
Si riparte da Subiaco (408 m. slm) la mattina. Ci dirigiamo verso Altipiani di Arcinazzo (900 m. slm), la terza tappa.
Dopo la colazione in questa bella sala liberty del buon  Ristorante Belvedere si riparte da Subiaco verso Altipiani di Arcinazzo, la terza tappa.
Invece della statale, consigliataci da Google Maps anche per il percorso a piedi, il proprietario del ristorante belvedere di Subiaco, che vi consiglio per la bontà dei cibi, la gentilezza del personale, e la bellezza del locale storico con gli interni in stile liberty, ci indica una strada alternativa che percorriamo dopo aver oltrepassato la villa di Nerone.
Il percorso si rivelerà essere molto bello da un punto di vista naturalistico. È un sentiero che costeggia l'Aniene per 12 chilometri circa, lambendo il paese di Jenne, per poi sfociare sulla provinciale. E quei 12 chilometri sono un susseguirsi di pareti rocciose scoscese, sorgenti che sgorgano dalle pareti delle colline ricoperte di muschio, allevamenti di trote e piccoli ponti di legno.



Pausa pranzo a Ponte della setacciara, cascate di Trevi - Comunacque. Usciti sulla provinciale si trova immediatamente la discesa che conduce alle piccole cascate di Trevi.

Ripresa la provinciale per poche centinaia di metri, subito dopo la fine del ponte parte il nuovo sentiero per Altipiani di Arcinazzo. È una scorciatoia sterrata, ripidissima e sdrucciolevolissima che in un paio di chilometri ci conduce alla tappa odierna facendoci salire di 350 m circa.

Andiamo a cena a La Dispensa DI MEMMO.



Domattina si riparte alla volta di Alatri.



Un cammino transappenninico:126Km in cinque giorni

martedì, novembre 14, 2017

Carnevale della Matematica #113 - Matematica sorprendente

L'edizione di novembre del Carnevale della Matematica, la numero 113, è ospitata da Mr. Palomar.
Io ho contribuito con la cellula melodica e con...

Ad aprire le danze è Dioniso Dionisi, alias Flavio Ubaldini, che dal suo blog Pitagora e dintorni segnala un post in due parti: Dedekind, il suo taglio e la soluzione del problema Ippaso: prima parte Dedekind, il suo taglio e la soluzione del problema Ippaso: seconda parte
Il post, ricorda Flavio, nasce dal fatto che un paio di lettori non matematici del suo libro "Il mistero del suono senza numero" gli hanno chiesto delucidazioni sul Taglio di Dedekind, ragion per cui il buon Dioniso ha deciso di scrivere una spiegazione, cercando di renderla il più discorsiva e il meno tecnica possibile.
Ubaldini segnala anche un altro suo articoletto, intitolato Un regalo pitagorico-coltraniano.

Per quanto riguarda l'edizione numero 114... 

14 dicembre 2017: (“il merlo canta nella luce”) Notiziole di .mau.

Calendario con le date delle prossime edizioni del Carnevale.

domenica, novembre 12, 2017

Solo o paese d'o sole?

Sul blog di Valeria c'è stata un'interessante discussione sul tema degli espatriati suscitata da un post del giornalista Claudio Rossi Marcelli che riporto di seguito.

"In queste due settimane molte persone mi hanno chiesto come ho potuto scegliere di tornare a vivere a Roma. Secondo me a questi molti sfugge il fatto che l'efficienza dei servizi aiuta, ma non è una garanzia di vita migliore. Ieri una barista ha detto alla signora alla cassa: "Mamma, fai lo scontrino al signore?". Dopo otto anni di camerieri italiani e spagnoli schiavizzati da Starbucks o Caffè Nero, l'idea di prendere un caffè in un bar a gestione familiare mi ha scaldato il cuore. Dopo otto anni all'estero riesco a vedere chiaramente degli aspetti profondi dell'Italia che da vicino non si riesce a distinguere. Primo tra tutti l'umanità. Roma poi, nessuno me la tocchi. I problemi ci sono ma più che lamentarmi preferisco rimboccarmi la maniche e fare la mia parte. E poi, vabbè, stamattina ho fatto questa foto. Ma de che stiamo a parla'"

Questo è il mio punto di vista espresso in modo molto sommario e riduttivo.

A me sono serviti 5-6 anni di permanenza all'estero per cominciare a vedere le cose in modo simile a come le vede quel giornalista. E adesso, dopo altri 13 anni, continuo a pensarla in quel modo. È vero, l‘efficienza dei servizi non è tutto. Basti vedere l’incidenza di suicidi per paese (questa è l'incidenza nella UE).
Io so che qui c’è più efficienza per alcuni servizi, ma nemmeno per tutti. Ad esempio le autostrade italiane sono incomparabilmente migliori. I treni sono paragonabili. Di certo l’alta velocità italiana è migliore. 
Ma so anche che ci sono cose che qui non potrò mai avere. Come quelle citate da Rossi Marcelli. 
Fortunatamente siamo riusciti a trovare un compromesso: andiamo in Italia molto spesso e cerchiamo di vivere positivamente in entrambi i posti.

Comunque, per rispondere a un altro commento, in quello che scrive Rossi Marcelli non ci vedo la convinzione che basti la bellezza e il buon cuore per poter chiudere gli occhi sul resto.

“I problemi ci sono ma più che lamentarmi preferisco rimboccarmi la maniche e fare la mia parte.”

Ecco, io credo che questo sia esattamente lo spirito giusto. Smettiamo di lamentarci, rimbocchiamoci la maniche e facciamo la nostra parte (e questo lo dico soprattutto a me stesso perché sono consapevole di non fare molto e mi piacerebbe fare di più). 

mercoledì, novembre 01, 2017

Dedekind, il suo taglio e la soluzione del problema di Ippaso: seconda parte

L’ultima volta non mi hai detto quali sarebbero gli altri modi per definire i numeri reali oltre alla definizione di Dedekind.
– Ah, sì, è vero. Beh, c'è la costruzione di Cantor attraverso le successione di Cauchy. Cantor sfrutta l'assioma di Dedekind e, partendo dal fatto che ogni numero reale è ottenibile come limite di una successione di Cauchy...
– No, fermati, fermati. Limiti, successioni. È troppo complicato. E poi, comunque, si torna sempre a Dedekind.
– Eh, sì, c'è bisogno di quell'assioma. Senza di quello o di qualcosa di equivalente non penso che riusciremmo a costruire una matematica interessante e sufficientemente potente per le esigenze dei fisici, ad esempio. Sostanzialmente dovremmo limitarci ai numeri razionali.
– Quindi mi stai dicendo che i numeri reali esistono grazie a un assioma?
– Beh... Un assioma... Una definizione... Considera, comunque, che questa costruzione è anche più precisa.
– Perché più precisa?
– Forse "più precisa" non è l'espressione giusta. Diciamo che è più economica. E lo è perché invece di usare tutti le frazioni minori del numero che si cerca di definire, usa solo quelle successioni di frazioni che si avvicinano sempre più al numero irrazionale che si sta cercando di definire.
Potresti mostrarmi un esempio?
– Certo. Consideriamo di nuovo il caso di . Prendiamo la sua rappresentazione decimale
1, 41421356237309... e definiamo così la successione:
a0 = 1
a1 = 14/10
a2 = 141/100
a3 = 1414/1000
a4 = 14142/10000
e così via...

– Ah! Ho capito. Prendi la successione di frazioni in cui a ogni passo si aggiunge la cifra successiva della rappresentazione decimale di √2:
a0 = 1
a1 = 1,4
a2 = 1,41
a3 = 1,414
a4 = 1,4142
ecc.
E quindi più vai avanti più ti avvicini al valore giusto. Però... Ma non stiamo un po’ barando? Non è di nuovo una petizione di principio? Non stiamo di nuovo usando  per definire ?
– No, no! Non è petizione di principio. Perché questa successione puoi sempre esprimerla, e scusami ma qui devo essere un po’ più tecnico, così...

Dove [ ] è la parte intera del numero.
– Ma non hai eliminato la radice di due. E poi le parte intera...
– Guarda, mi costringi a scendere ancora di più nei dettagli tecnici. Ecco la definizione senza radice di due e senza usare la parte intera in modo esplicito:



Va bene adesso?
– Ho capito, hai di nuovo ragione. È interessante, comunque.
Se ti interessa puoi approfondire un pochino leggendoti questa pagina: Costruzione tramite successioni di Cauchy... Anche qui puoi trovare una discussione sul tema. Ma perché ora sorridi?
– No, è che mi sta venendo da pensare... Con questo fatto che in queste definizioni compaiono numeri razionali che si avvicinano sempre di più all'irrazionale cercato... Ma allora aveva ragione Ippaso quando a pagina 95 comincia la ricerca della radice quadrata di 2...

– Beh, sì. Solo che lui si è fermato mentre Dedekind e Cantor sono andati avanti e sono riusciti a inquadrare quel procedimento in modo teorico e rigoroso.
– Mah...
– Non sembri convinta.
– No, è che... c'è di mezzo il concetto di infinito...
– E quindi?
– Secondo me Dedekind e Cantor hanno barato. Noi esseri umani non potremo mai contare o elencare cifre all'infinito. Era quello che dicevano pure i greci, no? E quindi, definire gli irrazionali attraverso quantità infinite di frazioni è come non definirli.
– Ma considera che quello è un risultato teorico... In realtà è anche costruttivo, ma solo in linea di principio, visto che prima o poi ci dovremo fermare. Però dal punto di vista teorico la validità di quel risultato è indiscutibile. E poi se volessimo eliminare il concetto di infinito dalla matematica dovremmo buttare alle ortiche quasi tutta la matematica moderna... Non sei ancora convinta?
– Così così. E comunque mi è rimasto il dubbio di cui ti avevo parlato la volta scorsa. Avevamo detto che per aggirare la petizione di principio si usano proprietà che definiscano i numeri irrazionali usando solo i numeri razionali. Tipo definire  con tutte le frazioni n/m tali che (n/m)2  < 2. Ma è possibile trovare un'espressione del genere per qualsiasi numero reale?
– Beh... no. Lo è se rimaniamo nell'ambito dei numeri che possono essere espressi attraverso un numero finito di operazioni (+, -, ⋅, :, √) applicate ai numeri interi. Perché puoi definire formule che ti permettano di aggirare la petizione di principio, come abbiamo fatto con la formula che hai appena scritto. Però esiste un'infinità molto più grande di numeri che non possono essere espressi come combinazione di un numero finito di operazioni semplici applicate ai numeri interi. Se si considerano, ad esempio, le equazioni dal 5° grado in poi, di tali numeri, come si accorse Galoise, se ne trovano molti. Ad esempio, uno di questi è l'unica soluzione reale dell'equazione di 5° grado x5x − 1 = 0. Ma, se non altro, quel numero, come abbiamo appena fatto, possiamo ancora definirlo in qualche modo. Ma esiste ancora un'altra categoria di numeri. Quelli che non possono essere neppure espressi come soluzioni di equazioni di grado qualsiasi.
– E quindi? Questo che significa?
– Mah, guarda. Io mi sono fatto quest’idea. Ipotizzando di poter assegnare ai numeri uno status di realtà più o meno indiscutibile e di poter stilare una classifica, ai naturali dovremmo assegnare uno status di realtà più indiscutibile degli irrazionali. Specialmente degli irrazionali dell’ultimo tipo che abbiamo visto, che poi si chiamano numeri trascendenti e sono la quasi totalità dei numeri. Quasi nessuno di questi può essere infatti rappresentato con precisione né usando cifre, né usando formule, né usando algoritmi. Mentre una certa quantità di numeri interi e razionali sì.
– No! Quindi mi stai dicendo che per la maggior parte dei numeri non riusciremo mai neppure a trovare un nome?!
– Eh, sì. Questa è una delle conseguenze di quello che ti dicevo. Pensa che se, per semplificare le cose, ci limitiamo all'intervallo dei numeri reali tra 0 e 4 sappiamo che lì troverò numeri irrazionali e trascendenti, come radice di 2 e pi greco, ad esempio. Ma pi greco è una rarissima eccezione tra i numeri trascendenti. Infatti per lui abbiamo sia un nome sia una formula. Pi greco è un numero fortunato perché gli è capitato di essere esattamente il rapporto tra una circonferenza e il suo diametro. E quindi rimane definito da quella sua essenza ontologica. Ma se esistesse un algoritmo che potesse scegliere un numero reale in modo totalmente casuale saremmo quasi certi di non poter trovare neppure un nome per quel numero scelto casualmente e di non essere nemmeno in grado di rappresentarlo in nessun modo: né elencando tutte le sue cifre né trovando una proprietà per definirlo come viene fatto per la radice di 2 e per il pi greco.
Sostanzialmente questa è la distinzione tra numeri algebrici e numeri trascendenti (a parte qualche eccezione definibile, come pi greco).
– Sono senza parole...