martedì, maggio 29, 2018

Fallimento del governo Conte con Lega e Cinque Stelle

Mi pongo una domanda relativamente all’attuale crisi. E non con fare il polemico. Me la pongo proprio perché vorrei cercare di capire meglio.

Ma la responsabilità del fallimento del governo Lega - Cinque Stelle è da attribuire più al Presidente della Repubblica, che ha chiesto di sostituire un ministro? Oppure a chi ha deciso di mandare tutto a monte a causa di quel ministro?

venerdì, maggio 25, 2018

Presentazione de "Il mistero del suono senza numero" nella libreria Assaggi di Roma

Dopo Crotone, Arce, HeidelbergScandriglia, Bari e Francoforte, non poteva mancare Roma.

Sono rimasto molto soddisfatto del risultato e mi sono divertito. Sono rimasto molto soddisfatto del risultato e mi sono divertito. I contributi di Roberta Fulci, Tommaso Castellani e Paolo M. Albani sono stati determinanti. E le domande e i commenti di un ex professore di filosofia mi hanno rallegrato particolarmente.




       



mercoledì, maggio 16, 2018

Zenone aveva ragione! - "La matematica degli dèi e gli algoritmi degli uomini" di Paolo Zellini

L'ultima volta ho condiviso considerazioni di Zellini sul tema del realismo in matematica e dall'annoso pitagorico problema dei razionali e degli irrazionali.
Oggi proseguiamo su quel tema riportando le considerazioni di Zellini sui paradossi di Zenone... Ma quindi Zenone aveva ragione?

"In questo mondo capriccioso, nulla è più capriccioso della fama presso i posteri. Una delle più notevoli vittime della mancanza di senno è Zenone di Elea. Malgrado abbia inventato quattro argomentazioni tutte smisuratamente sottili e profonde, la stupidità dei filosofi a lui successivi proclamò che Zenone non era altro che un ingegnoso giocoliere e le sue argomentazioni erano tutte sofismi. Dopo duemila anni di continua confutazione, questi sofismi sono stati nuovamente enunciati, e formarono la base di una rinascita della matematica ad opera di un professore tedesco...
Weierstrass, col bandire rigorosamente tutti gli infinitesimali, ha finalmente dimostrato che noi viviamo in un mondo immutabile, e che la freccia, in ogni singolo istante del suo volo, è realmente in quiete.
Russell (Principles, par. 332) pensava che l’argomento della freccia enunciasse un fatto del tutto elementare, e che il trascurarlo avesse tenuto la filosofia del movimento in un pantano per lunghi secoli. Il suo richiamo a Karl Weierstrass si può spiegare in questo modo: assieme ad Augustin-Louis Cauchy, Weierstrass fu il primo matematico a rifondare con chiarezza l’analisi senza infinitesimi, affermando che

una funzione f(x) tende a un limite L, per x che tende a l, se, in corrispondenza a un dato valore positivo ε comunque piccolo, si può trovare un numero positivo δ (dipendente da ε) tale che la distanza di f(x) da L è minore di ε quando la distanza di x da l è minore di δ. Se L = 0 la funzione f si approssima a 0 per x che tende a l, ma nella definizione si evita appositamente di dire che il valore f(x) diventa infinitesimo.

Scompare allora l’idea del fluire, della tensione dinamica della variabile verso il suo limite, semplicemente perché le variabili, entro i confini disegnati da ε e da δ, non si muovono affatto, assumono soltanto i valori che a loro competono. L’immobilità prevale sul movimento
Si può allora definire la velocità di un corpo in un istante t soltanto come il limite del rapporto tra lo spazio percorso e il tempo di percorrenza al tendere della variabile tempo all’istante t. Questo limite, un semplice numero, è la derivata dello spazio come funzione del tempo di percorrenza all’istante t. In questo modo si potevano evitare le «quantità evanescenti» concepite nei primi sviluppi del calcolo infinitesimale.
...
I numeri razionali e irrazionali, pensati come limiti di variabili, ereditavano la natura effettiva e reale di concetti fisici come la velocità e l’accelerazione. Negli stessi numeri si potevano ravvisare delle entità atomiche paritetiche ai punti della retta. Il movimento poteva essere interpretato attraverso le sole coordinate dello spazio-tempo, e quindi per via di successive posizioni fisse e puntuali. «La meccanica può spiegare il movimento solo attraverso l’immobilità».

Solamente nei numeri, era questa la conclusione importante, si trovava la realtà del continuo spazio-temporale. E i numeri che assolvevano a questo compito potevano essere sia razionali che irrazionali. Di più, l’esistenza dei numeri reali (razionali + irrazionali) sarebbe apparsa, dopo Weierstrass, l’effetto di una libera creazione del matematico, ancorché indotta da proprietà oggettive del corpo numerico. Quale migliore accordo tra pensiero e natura, tra libertà ed effettività?
...
ma la continuità geometrica era già di fatto concepita, grazie alle teorie di Cantor e di Dedekind, come un dominio di numeri attuali. Il disegno dell’aritmetizzazione dell’analisi aveva già atomizzato l’estensione continua. L’attualità poggia infine, nella teoria del continuo numerico, su entità atomiche definite, costituenti un sistema di divisioni reali, di eventi istantanei in relazione con altri eventi collocati in qualche punto del continuo. Tra numeri e punti si stabilisce assiomaticamente una corrispondenza biunivoca, e per il tramite dei numeri i punti dello spazio e gli istanti del tempo acquistano una nuova specie di realtà."

Altre considerazioni correlate:
Zellini e l'ontologia della matematica
Roberto Natalini e il rapporto tra matematica e realtà

lunedì, maggio 14, 2018

Carnevale Matematica #109 su Pitagora e dintorni: il 10° anniversario

L'edizione di maggio del Carnevale della Matematica, la numero 109, è ospitata da me su Pitagora e dintorni e il tema è "matematica e filosofia".


Ovviamente è un carnevale bellissimo. E allora che aspettate ad andare a leggervelo?!



La prossima edizione, la 120, del 14 giugno 2018 avrà come nome in codice “canta, canta, canta il merlo tra i cespugli”, sarà ospitata da Maurizio Codogno su Il Post e avrà come tema "didattica".

Calendario con le date delle prossime edizioni passate e future del Carnevale

giovedì, maggio 10, 2018

Il volo delle chimere" sarà al Salone del libro di Torino

Da oggi fino al 14 maggio "Il volo delle chimere" sarà al Salone del libro di Torino con Scienza Express!
Lo si potrà trovare allo stand E38 al Padiglione 1.

Buon Salone e buone letture

mercoledì, maggio 09, 2018

Brahms e Čajkovskij

Da Brahms e Tchaikovsky di Guido Zaccagnini

“La nostra confusione è tuttavia preferibile alla penosa fiacchezza camuffata da seria creatività di Brahms e di altri compositori simili. Essi si estenuano senza speranza. Pieni di pretese di essere profondi senza una vera profondità.”

“Il concerto per violino di Brahms mi è piaciuta poco. Come tutto il resto che ha scritto.
Prendiamo per esempio l’inizio del concerto. È bello come introduzione, è un ottimo piedistallo per le colonne. Ma le colonne non ci sono. E subito dopo un piedistallo ne segue un altro. Intendo dire che la musica di Brahms non esprime mai niente. E se esprime qualcosa non finisce di esprimerla.
La sua musica è costituita da brandelli di qualcosa incollati fra loro artificialmente. ... È come se il compositore si fosse prefisso il compito specifico di apparire incomprensibile e profondo. Sembra divertirsi a canzonare le nostre sensibilità musicali. Quando ascolti la sua musica ti domandi: Brahms è profondo o sta solo tentando di nascondere la sua povertà di invenzione con un’imitazione della profondità?”

Pëtr Il’ič Čajkovskij

Adesso ho un’idea della ragione per cui il nostro direttore, brahmsiano fino al midollo, non ci faccia mai suonare musiche di Čajkovskij.
E aggiungo che, sommessamente, mi trovo abbastanza vicino al giudizio di Čajkovskij.

martedì, maggio 08, 2018

Come la matematica (e i vaccini) ti proteggono dalle malattie infettive

Condivido questo articolo perché, oltre a essere interessante da un punto di vista matematico, mi riguarda anche personalmente. Infatti appartengo a quel gruppo di persone che corrono grossi rischi se l'immunità di comunità viene a mancare.
Di seguito una libera traduzione di alcuni brani dell'articolo.

Supponi di sentire un pettegolezzo sfizioso che non riesci a tenere per te. Siccome odi i pettegoli, ti concedi di spettegolare con una sola persona e poi tieni la bocca chiusa. Non è grave, giusto? Dopo tutto, se la persona con cui hai spettegolato adotta lo stesso compromesso, il pettegolezzo non si diffonderà molto. Se il pettegolezzo viene rivelato a una nuova persona ogni giorno, dopo 30 giorni solo 31 persone, incluso te, ne saranno a conoscenza.
Quindi quanto male potrebbe fare dirlo a due persone invece di una sola?

Inimmaginabilmente tanto!
Se ogni giorno ogni persona informa due nuove persone, dopo 30 giorni il pettegolezzo avrà raggiunto più di un quarto della popolazione mondiale (2.147.483.647 persone, o 2^31 - 1, per essere precisi). Come può un così piccolo cambiamento – dirlo a due persone invece di una - produrre una così grande differenza? La risposta sta nei tassi di incremento.

Si fa presto a traslare questa metafora nell’ambito delle malattie infettive considerando il numero medio di nuove infezioni che ogni persona infetta dovrebbe produrre al posto del numero di persone a cui si rivela il pettegolezzo. Quel numero è indicato con R0.

Ecco alcuni numeri di riproduzione di base per alcune malattie ben note.

Malattia
 R0
Morbillo
12-18
Vaiolo
5-7
Parotite
4-7
Influenza (ceppo pandemico 1918)
2-3

Source: CDC and NIH


Ed ecco alcuni esempi di HIT (soglia di persone vaccinate affinché si crei l’immunità di comunità) per le stesse malattie.

Malattia
R0
 1–1/R0
HIT
Morbillo
12
 1–1/12
91.7%
Vaiolo
5
 1–1/5
80%
Parotite
4
 1–1/4
75%
Pandemia influenzale
2
1–1/2
50%



sabato, maggio 05, 2018

Presentazione de "Il mistero del suono senza numero" nella libreria Assaggi di Roma

Copiato da Presentazione | Il mistero del suono senza numero (ScienzaExpress) di Flavio Ubaldini

23 maggio 2018 19:30 – 20:30 Presentazione | Il mistero del suono senza numero (ScienzaExpress) di Flavio Ubaldini - Mappa libreria assaggi


Flavio Ubaldini

PRESENTA

Il mistero del suono senza numero (ScienzaExpress)

Ne parlano con l'autore Roberta Fulci e Tommaso Castellani


Letture a cura di Paolo M. Albani

Il mistero del suono senza numero (ScienzaExpress)

Che cosa ossessiona Pitagora e lo spinge nella bottega di un fabbro? Quale teoria lo porta a rivoluzionare la sua scuola a Crotone? E che cosa c’entra la musica? Ippaso, il suo allievo più brillante ma anche il più ribelle e arrogante, si accorge che qualcosa non va. C’è un numero che manca, c’è un suono di troppo. Forse l’interpretazione pitagorica dell’Universo è in pericolo? Mentre Ippaso indaga, c’è chi trama nell’ombra per ostacolarne l’amore segreto e per impedire che le sue scoperte facciano crollare la dottrina pitagorica. Colpi di scena, amore e intrighi si intrecciano alle scoperte matematiche dei pitagorici e alla ricerca della risposta ultima che arriverà solo dopo oltre duemila quattrocento anni.


Flavio Ubaldini
(Scandriglia, 1969) è laureato in matematica e diplomato in trombone. Vive e lavora in Germania. Nel 2014 ha pubblicato, per 40K Unofficial La musica dei numeri e La musica dell’irrazionale. Nel 2016 il suo dramma I Pitagorici è stato messo in scena al Politecnico di Torino.

martedì, maggio 01, 2018

Carnevale della matematica di maggio 2018 e Carnevale della Matematica dal vivo

Il 14 maggio la 119-esima edizione del Carnevale della matematica (nome in codice: “zampettando melodioso”) sarà ospitata sul mio blog matematico, Pitagora e dintorni. Il tema sarà "matematica e filosofia". Ma, come sempre, tutti i contributi fuori tema andranno benissimo lo stesso.
Inoltre il 119-esimo sarà un carnevale speciale! Quello del 10° anniversario. Il 1° si tenne nel lontano 14 maggio del 2008 su Gli studenti di oggi.


Ma non è finita qui! A maggio, e precisamente il 18-19, si terrà anche  il Carnevale della Matematica dal vivo a Napoli!

Se vorrete contribuire la scadenza è, come al solito, il 12, ma se riuscirete a mandarmi i contributi con un po' di anticipo non mi dispiacerà.