domenica, giugno 03, 2018

La costruzione di una scala musicale attraverso i numeri - F. Talamucci: il temperamento equabile e i numeri irrazionali

Riporto questo interessante brano da La costruzione di una scala musicale attraverso i numeri in cui Federico Talamucci parla delle difficoltà insite nel temperamento equabile e degli aspetti psicofisici correlati a tale scala musicale.

"Un aspetto contestato alla scala del temperamento equabile1 è stato proprio quello di imporre l'uso di numeri complicati dal punto di vista aritmetico: i numeri irrazionali hanno uno sviluppo decimale infinito, non periodico, necessitano di essere approssimati, ... Pertanto la scala non fu unanimemente associata ad una naturale e spontanea condizione, come poteva essere quella di ottenere i suoni per divisioni in poche parti (dunque facendo uso di semplici numeri razionali che esprimono le divisioni) di una corda. In secondo luogo, se abbiamo presente la formazione fisica di un suono come sovrapposizione di suoni armonici, ovvero di suoni con frequenze f, 2f, 3f, . . ., è da notare l'estraneità dei suoni della scala E dal punto di vista degli armonici: nessun suono, a parte ovviamente l'ottava, fa parte degli armonici di qualche altro. Tuttavia, in ambito sperimentale esiste una legge empirica (formulata già dal 1860) che si adatta perfettamente a spiegare la costruzione della scala equabile: tale legge, nota come legge di Weber, riguarda in generale la relazione tra uno stimolo (che può essere un peso da sopportare, un agente che provoca dolore, oppure, appunto, una fonte sonora) e la percezione che consegue. Si tratta evidentemente di rappresentare un fenomeno a carattere soggettivo (si parla infatti di psicofisica): in modo generale, sulla base di test ed esperimenti, tale fenomeno viene inquadrato da una formula matematica...  la legge afferma che un graduale aumento della sensazione in altezza avviene in corrispondenza di frequenze che si susseguono in progressione geometrica, proprio come nella scala temperata. Pur rimanendo nella sfera delle percezioni e non delle leggi fisiche automaticamente quantificabili, l’obiettivo di avvertire un aumento dell’altezza dei suoni progressivo ed uniforme viene realizzato dalla scala dei suoni irrazionali.



1. La scala del temperamento equabile è caratterizzata dall'essere equidistanziata, che chiameremo scala E , vuole che i gradini G1, . . . , GN di (6) siano tutti uguali e pari ad un numero positivo r: G1 = G2 = · · · = GN = r ovvero f1/f0 = f2/f1 = · · · = 2f0/fN-1 = r. Questo comporta che i suoni della scala formino una progressione geometrica di ragione r. Per determinarli, operiamo ad esempio come segue: 2 = 2f0/f0 = 2f0/fN-1*fN-1/fN-2*. . . * f2/f1*f1/f0 = rN da cui r = N√2. Per ottenere i valori dei suoni della scala temperata possiamo quindi applicare questa formula:

fK = (N√2)Kf0, K = 0, 1, . . . , N

Nessun commento: